

Государственное автономное учреждение дополнительного профессионального образования Чукотского автономного округа «Чукотский институт развития образования и повышения квалификации»

Центр оценки качества образования и аттестации

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

по подготовке к ГИА 2021 г. выпускников образовательных организаций Чукотского автономного округа, освоивших программы основного общего образования (на основе анализа типичных ошибок диагностических процедур обучающихся 10-х классов 2020-2021 учебного года)

по физике

Сборник содержит методические рекомендации по подготовке выпускников 9-х классов общеобразовательных организаций Чукотского автономного округа к государственной итоговой аттестации в 2021 году, составлен на основе анализа типичных ошибок диагностических процедур по физике обучающихся 10 классов 2020-2021 учебного года. Сборник предназначен педагогическим работникам образовательных организаций Чукотского автономного округа, осуществляющих подготовку обучающихся 9-х классов к ГИА.

Составитель: Литвинова Галина Владимировна, заведующий центром дополнительного профессионального образования государственного автономного учреждения дополнительного профессионального образования Чукотского автономного округа «Чукотский институт развития образования и повышения квалификации».

Рассмотрено на заседании Ученого совета государственного автономного учреждения дополнительного профессионального образования Чукотского автономного округа «Чукотский институт развития образования и повышения квалификации». Протокол № 02-05/06 от 30.12.2020 г.

- 1. Краткая характеристика контрольно-измерительных материалов ОГЭ 2020 года, изменения в структуре и содержании КИМ ОГЭ 2021 года.
 - 1.1. Структура и содержание КИМ ОГЭ по физике 2020 года.
- 1.2. Изменения, уточнения в структуре и содержании КИМ ОГЭ по физике 2021 года.
- 2. Общий анализ результатов диагностических процедур по физике обучающихся 10-х классов 2020-2021 учебного года.
- 3. Анализ типичных ошибок на основе результатов диагностических процедур по физике обучающихся 10-х классов 2020-2021 учебного года.
- 4. 4. Рекомендации по подготовке выпускников 9-х классов общеобразовательных организаций Чукотского автономного округа к ГИА по физике в 2021 г.

1. Краткая характеристика контрольно-измерительных материалов ОГЭ 2020 года, изменения в структуре и содержании КИМ ОГЭ 2021 года

1.1. Структура и содержание КИМ ОГЭ по физике 2020 года.

Каждый вариант экзаменационной работы включает в себя 25 заданий, различающихся формой и уровнем сложности. В работе используются задания с кратким ответом и развёрнутым ответом.

В заданиях 3, 15, 19 и 20 необходимо выбрать одно верное утверждение из четырёх предложенных и записать ответ в виде одной цифры. К заданиям 5–10 необходимо привести ответ в виде целого числа или конечной десятичной дроби.

Задания 1, 2, 11, 12 и 18 — задания на соответствие, в которых необходимо установить соответствие между двумя группами объектов или процессов на основании выявленных причинно-следственных связей.

В заданиях 13, 14 и 16 на множественный выбор нужно выбрать два верных утверждения из пяти предложенных.

В задании 4 необходимо дополнить текст словами (словосочетаниями) из предложенного списка. В заданиях с развёрнутым ответом необходимо представить решение задачи или дать ответ в виде объяснения с опорой на изученные явления или законы.

Каждый вариант содержит пять групп заданий, направленных на проверку различных блоков умений, формируемых при изучении курса физики.

В работе контролируются элементы содержания из следующих разделов (тем) курса физики: механические явления, тепловые явления, электромагнитные явления и квантовые явления. Общее количество заданий в работе по каждому из разделов приблизительно пропорционально его содержательному наполнению и учебному времени, отводимому на изучение данного раздела в школьном курсе физики.

Экспериментальное задание 17 проверяет:

- 1) умение проводить косвенные измерения физических величин: Плотности вещества; силы Архимеда; коэффициента трения скольжения; жёсткости пружины; момента силы, действующего на рычаг; работы силы упругости при подъёме груза с помощью подвижного или неподвижного блока; работы силы трения; оптической силы и фокусного расстояния собирающей линзы; электрического сопротивления резистора; работы и мощности тока;
- 2) умение представлять экспериментальные результаты в виде таблиц, графиков или схематических рисунков и делать выводы на основании полученных экспериментальных данных: о зависимости силы упругости, возникающей в пружине, от степени деформации пружины; о зависимости силы тока, возникающей в проводнике, от напряжения на концах проводника; о зависимости силы трения скольжения от силы нормального давления; о свойствах изображения, полученного с помощью собирающей линзы;
- 3) умение проводить экспериментальную проверку физических законов и следствий: проверка правила для электрического напряжения при последовательном соединении резисторов, проверка правила для силы электрического тока при параллельном соединении резисторов.
- В работе представлены задания разных уровней сложности: базового, повышенного и высокого.

1.2. Изменения, уточнения в структуре и содержании КИМ ОГЭ по физике 2021 года.

В 2020 г. изменилась структура экзаменационной работы. К тексту физического содержания вместо двух заданий с выбором одного верного ответа предлагается одно задание на множественный выбор. Увеличилось число заданий с развёрнутым ответом: добавлена ещё одна качественная задача.

В 2021 г. задания 21 будут построены на контексте учебных ситуаций, преимущественно — на прогнозировании результатов опытов или интерпретации их результатов, а задания 22 — на практико-ориентированном контексте. Расширилось содержание заданий 17 (экспериментальное задание на реальном оборудовании). К проведению косвенных измерений добавлено исследование зависимости одной физической величины от другой, включающее не менее трёх прямых измерений с записью абсолютной погрешности.

Максимальный балл за выполнение всех заданий работы увеличился с 43 до 45 баллов.

2. Общий анализ результатов диагностических процедур по физике обучающихся 10-х классов 2020-2021 учебного года (информация о количестве участников, среднем балле).

Всего экзаменационную работу по физике в 2020 года писало 68 человек, что на 13 участников меньше, чем в прошлом году.

Средний тестовый балл по Чукотскому автономному округу составил **19,13 баллов** из 100 возможных. Ни один участник ИГА по физике по Чукотскому автономному округу не получил 100 тестовых баллов.

Из них как минимум подтвердили освоение наиболее значимых содержательных элементов по физике и овладение наиболее важными видами учебной деятельности в соответствии с действующим государственным образовательным стандартом 89,7% участников экзамена.

Не набрали минимальных 11 баллов 7 человек (10,29%), что гораздо выше, чем в 2019 году (0%).

Доля высокобалльников (80-100 баллов) составила 2,94%.

По результатам ОГЭ по физике в 2020 году наблюдается отрицательная динамика среднего балла и процента выполнения экзаменационной работы, увеличивается количество участников, получивших отметку «удовлетворительно» и «хорошо», уменьшилось количество участников, получивших отметку «отлично».

- 3. Анализ типичных ошибок на основе результатов диагностических процедур по физике обучающихся 10-х классов 2020-2021 учебного года (подробное описание с представлением и разбором примеров)
 - раздел КИМ определяется затруднение/ошибка в задании;
 - подробный анализ затруднения/ошибки.

Каждый вариант КИМ содержал пять групп заданий, направленных на проверку различных блоков умений, формируемых при изучении курса физики:

- 1. Владение понятийным аппаратом курса физики: распознавание явлений, вычисление значения величин, использование законов и формул для анализа явлений и процессов 14 заданий.
- 2. Методологические умения (проведение измерений и опытов) -3 задания.
- 3. Понимание принципов действия технических устройств, вклад учёных в развитии науки 1 задание.
- 4. Работа с текстом физического содержания 3 задания.
- 5. Решение расчётных и качественных задач 4 задания.

В работе контролировались элементы содержания из следующих разделов (тем) курса физики: механические явления, тепловые явления, электромагнитные явления и квантовые явления. Общее количество заданий в работе по каждому из разделов было приблизительно пропорционально его содержательному наполнению и учебному времени, отводимому на изучение данного раздела в школьном курсе физики.

В диагностической работе были представлены задания разных уровней сложности: базового уровня 16 заданий, повышенного – 6 заданий и высокого – 3 задания.

На рисунке 1 приведена диаграмма средних процентов выполнения по каждой линии заданий для диагностической работы 2020 г.

Рисунок 1

Содержательный элемент считается усвоенным, если средний процент выполнения для заданий базового уровня сложности превышает 65%, а для заданий повышенного и высокого уровней сложности — 50%. Как видно из таблицы 1, выполнение заданий базового уровня сложности свидетельствует об усвоении не всех проверяемых элементов содержания физики механических, тепловых, электромагнитных и квантовых явлений.

По результатам выполнения групп заданий, проверяющих одинаковые элементы содержания и требующие для их выполнения одинаковых умений, можно говорить об усвоении элементов содержания и умений, проверяемых заданиями экзаменационной работы.

Рассмотрим примеры заданий диагностической работы по физике для 10 класса (углубленный уровень) по пяти блокам умений, формируемых при изучении курса физики.

I. Владение понятийным аппаратом курса физики: распознавание явлений, вычисление значения величин, использование законов и формул для анализа явлений и процессов

Группа из 14 заданий базового и повышенного уровней сложности проверяло освоение понятийного аппарата курса физики. Ключевыми в этом блоке являлись задания на распознавание физических явлений как в ситуациях жизненного характера, так и на основе описания опытов, демонстрирующих протекание различных явлений. Кроме того, в этой группе проверялись простые умения по распознаванию физических понятий, величин и формул и более сложные умения по анализу различных процессов с использованием формул и законов.

Данный блок составляет 56% от всей диагностической работы и состоит из 14 заданий: 12 заданий базового уровня сложности и 2 задания повышенного уровня сложности.

Анализируя результаты выполнения заданий видно, что учащимися усвоены шесть заданий: четыре задания базового уровня сложности и два повышенного уровня сложности.

Задание 1 проверяло умение *правильно трактовать физический смысл используемых величин, их обозначения и единицы.*

С этим заданием успешно справились 52 человека. Средний процент выполнения данного задания базового уровня сложности составил 76,4%.

Задание 3 на распознавание проявлений изученных физических явлений, выделяя их существенные свойства или признаки.

Данное задание в диагностической работе для учащихся новое: предлагался текст физического содержания с пропущенными словами. В ответе был предложен список из семи слов, из которых надо было выбрать по смыслу и вставить в текст. С этим заданием справились 48 человек. Средний процент выполнения данного задания базового уровня сложности составил 70,5%.

В заданиях базового уровня сложности 11 и 12 проверялось умение описывать изменения физических величин при протекании физических явлений и процессов. Средний процент выполнения заданий составил соответственно **80,8%** (55 чел.) и **77,8%** (53 чел.).

В заданиях 13 и 14 проверялось умение описывать свойства тел, физические явления и процессы, используя физические величины, физические законы и принципы: (анализ графиков, таблиц и схем). Эти задания повышенного уровня сложности на множественный выбор, когда необходимо из предложенного перечня утверждений выбрать два правильных.

Учащиеся успешно справились с этими заданиями и верно определили два правильных варианта ответа. С этим заданиями успешно справились 63 человека Средний процент выполнения данных заданий соответственно составил по **92,5%**.

На недостаточном уровне усвоены следующие проверяемые умения:

1. Различать словесную формулировку и математическое выражение закона, формулы, связывающие данную физическую величину с другими величинами.

Данное умение проверялось заданием 2 базового уровня сложности. В данном задании необходимо было установить соответствие между формулами для расчёта физических величин и названиями этих величин. С этим заданием успешно справились только 15 человек. Средний процент выполнения данного задания составил по 22%.

2. Вычислять значение величины при анализе явлений с использованием законов и формул

Данное умение проверялось шестью заданиями с 5 по 10 базового уровня сложности. Эти задания представляли собой типичные расчётные задачи из основных разделов курса физики основной школы. Учащимся надо было продемонстрировать умение проводить анализ результатов, выраженных в виде таблицы, графика, рисунка, схемы.

Задания 5 и 6 относилось к разделу «Механические явления». Средний процент выполнения этих заданий составил соответственно **39,7%** (27 чел.) и **26,4%** (18 чел).

Задание 7 относится к разделу «Тепловые явления» к темам «Количество теплоты», «Плавление и отвердевания кристаллических тел», «График плавления и отвердевания кристаллических тел». Средний процент выполнения данного задания составил **55,8%** (38 чел).

Задания 8 и 9 из раздела «Электромагнитные явления». Средний процент выполнения этой задачи составил соответственно **42,6%** (29 чел.) и **17,6%** (12 чел.).

Задание 10 из раздела «Квантовая явления», который изучается в 9 классе в конце учебного года. С этим заданием успешно справились только 33 человека. Средний процент выполнения задания составил **48,5%.**

II. Методологические умения (проведение измерений и опытов).

Группа из трёх заданий проверяла овладение методологическими умениями. В диагностической работе были предложены как теоретические задания на снятие показаний измерительных приборов и анализ результатов опытов по их описанию, так и экспериментальное задание на реальном оборудовании на проведение косвенных измерений, проверку закономерностей или исследование зависимостей физических величин.

Задание 15 базового уровня сложности проверяло умение проводить прямые измерения физических величин с использованием измерительных приборов, правильно составлять схемы включения прибора в экспериментальную установку, проводить серию измерений

Средний процент выполнения заданий 61,7% (42 чел.).

Задание 16 повышенного уровня сложности на множественный выбор проверяло умение учащихся анализировать отдельные этапы проведения исследования на основе его описания: делать выводы на основе описания исследования, интерпретировать результаты наблюдений и опытов. Учащиеся успешно справились с этим заданием и показали хороший результат. Средний процент выполнения задания составил 95,5% (65 чел.).

Задание 17 высокого уровня сложности проверяло умение учащихся проводить косвенные измерения физических величин, исследование зависимостей между величинами, проверку закономерностей (экспериментальное задание на реальном оборудовании).

Это задание в КИМах ОГЭ считается одним из сложных и оценивается по критериям.

Учащимся необходимо было полностью правильно выполнить задания, включающее четыре шага: сделать рисунок экспериментальной установки, записать формулу для расчёта плотности через массу тела и его объём, правильно записать результаты прямых измерений с учётом заданных абсолютных погрешностей измерений массы тела и его объёма и записать правильное числовое значение искомой величины. С этим заданием успешно справились только 18 человек. Средний балл выполнения этого задания составил 26,4%.

III. Понимание принципов действия технических устройств, вклад учёных в развитии науки

Данный блок был представлен одним заданием базового уровня сложности, которое проверяло умение учащихся различать явления и закономерности, лежащие в основе принципа действия машин, приборов и технических устройств или приводить примеры вклада российских и зарубежных ученых-физиков в развитие науки, объяснение процессов окружающего мира, в развитие техники и технологий.

Задание 18 в КИМах ОГЭ вновь введённое и не вызвало затруднений у учащихся при его выполнении. Учащихся успешно с ним справились. Средний процент выполнения задания составил **85,2%** (58 чел.).

IV. Работа с текстом физического содержания.

В каждый вариант диагностической работы было включено три задания, оценивающих работу учащихся с текстами физического содержания. При этом проверялись умения интерпретации текстовой информации и её использования при решении учебно-практических задач.

Работа с информацией физического содержания проверялась и опосредованно через использование в текстах заданий других блоков различных способов представления информации: текст, графики, схемы, рисунки.

Предлагался текст физического содержания и три задания к этому тексту.

Задания 19 и 20 базового уровня сложности проверяли умение учащихся интерпретировать информацию физического содержания, отвечать на вопросы с использованием явно и неявно заданной информации. Преобразовывать информацию из

одной знаковой системы в другую. Средний процент выполнения задания составил соответственно **67,6%** (46 чел.) и **55,8%** (38 чел).

Задание 21 повышенного уровня сложности проверяло умение применять информацию из текста при решении учебно-познавательных и учебно-практических задач.

Ответ на вопрос к тексту выполняется учащимися в развернутом виде и оценивается в 2 балла по предложенным критериям. Учащимся снижался 1 балл при следующих ответах: дан правильный ответ на поставленный вопрос, но его обоснование не являлось достаточным, или в нём допущена ошибка; или представлены корректные рассуждения, приводящие к правильному ответу, но ответ был явно не сформулирован. Средний процент выполнения задания составил **51,4%** (35 чел.).

V. Решение расчётных и качественных задач.

Данный блок состоял из четырёх заданий, проверяющих умения решать качественные и расчётные задачи по физике.

В диагностической работе предлагались несложные качественные вопросы, сконструированные на базе учебной ситуации или контекста «жизненной ситуации», а также одна расчётная задача повышенного уровня сложности и две расчётные задачи высокого уровня сложности по трём основным разделам курса физики.

Ответ на вопрос в задании 22 также выполнялся учащимися в развернутом виде и оценивался по предложенным критериям. За правильный ответ на вопрос и достаточное обоснование учащиеся получали 2 балла. Средний процент выполнения задания составил 50% (34 чел.).

Самыми сложными в диагностической работе являются расчетные задачи. Задания 23, 24 и 25 выполненными, если приведено полное правильное решение, включающее следующие элементы:

- 1) верно записано краткое условие задачи;
- 2) записаны уравнения и формулы, применение которых необходимо и достаточно для решения задачи выбранным способом;
- 3) выполнены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу, и представлен ответ. При этом допускается решение «по частям» (с промежуточными вычислениями).

Задание 23 повышенного уровня сложности проверяло умение решать расчётные задачи, используя законы и формулы, связывающие физические величины. Средний процент выполнения задания составил **46,9%** (32 чел.).

Задания 24 и 25 высокого уровня сложности проверяли умение решать расчётные задачи, используя законы и формулы, связывающие физические величины (комбинированные задачи). Данные задачи считаются выполненными, если ученик получил 2 или 3 балла. Средний процент выполнения заданий 24 и 25 соответственно составил **20,6%** (14 чел.) и **16,1%** (11 чел.).

выводы:

По результатам выполнения диагностической работы по физике в 2020 году учащимися 10-х профильных классов справились с предложенными заданиями. Это говорит о том, что десятиклассники осознанно выбирают учебный предмет «Физика» для продолжения изучения физики в старшей школе на углубленном уровне.

По результатам экзамена 22 учащихся успешно выполнили диагностическую работу на отметку «4» и «5», что составило 32,3% от общего количества, выполнявших работу по физике.

На отметку «3» справились 39 учеников, что составило 57,3% от всего количества, выполнявших работу.

Не справились с диагностической работой 7 учеников, что составляет 10,2%.

Перечень элементов содержания, умений и видов деятельности, усвоение которых школьниками региона в целом можно считать достаточным:

- Правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; выделять приборы для их измерения.
- Распознавать явление по его определению, описанию, характерным признакам и на основе опытов, демонстрирующих данное физическое явление. Различать для данного явления основные свойства или условия протекания явления.
- Описывать изменения физических величин при протекании физических явлений и процессов.
- Описывать свойства тел, физические явления и процессы, используя физические величины, физические законы и принципы: (анализ графиков, таблиц и схем).
- Проводить прямые измерения физических величин с использованием измерительных приборов, правильно составлять схемы включения прибора в экспериментальную установку, проводить серию измерений.
- Анализировать отдельные этапы проведения исследования на основе его описания: делать выводы на основе описания исследования, интерпретировать результаты наблюдений и опытов.
- Различать явления и закономерности, лежащие в основе принципа действия машин, приборов и технических устройств / Приводить примеры вклада российских и зарубежных ученых-физиков в развитие науки, объяснение процессов окружающего мира, в развитие техники и технологий.
- Интерпретировать информацию физического содержания, отвечать на вопросы с использованием явно и неявно заданной информации. Преобразовывать информацию из одной знаковой системы в другую.

Перечень элементов содержания, умений и видов деятельности, усвоение которых школьниками региона в целом нельзя считать достаточным:

- Различать словесную формулировку и математическое выражение закона, формулы, связывающие данную физическую величину с другими величинами.
- Вычислять значение величины при анализе явлений с использованием законов и формул.
- Проводить косвенные измерения физических величин, исследование зависимостей между величинами, проверку закономерностей (экспериментальное задание на реальном оборудовании).
- Применять информацию из текста при решении учебно-познавательных и учебно-практических задач.

- Объяснять физические процессы и свойства тел (ситуация «жизненного» характера).
- Решать расчётные задачи, используя законы и формулы, связывающие физические величины.
- Решать расчётные задачи, используя законы и формулы, связывающие физические величины (комбинированная задача).

Возможные причины ошибочных ответов:

- недостаток времени на отработку знаний и умений по сложным темам курса и для решения расчетных задач;
 - малый опыт работы с анализом текстов с физическим содержанием;
- недостаточный опыт выполнения лабораторных и экспериментальных работ при изучении курса физики.

Анализируя результаты выполнения диагностической работы по физике можно говорить о том, что, необходимо существенно усилить подготовку учащихся для успешной сдачи ЕГЭ по физике, как предмета по выбору.

4. Рекомендации по подготовке выпускников 9-х классов общеобразовательных организаций Чукотского автономного округа к ГИА по физике в 2021 г.

В целях совершенствования процесса обучения в основной и старшей школе и повышения качества подготовки по физике выпускников 10-х классов рекомендуется:

- обеспечить освоение учащимися основного содержания курса физики и оперирование ими разнообразными видами учебной деятельности, представленными в кодификаторе элементов содержания и требований к уровню подготовки выпускников средней школы. В наиболее тщательной отработке нуждается материал, составляющий базовое ядро содержания физического образования, так как проверяющие его задания должны выполняться всеми учащимися.
- обеспечить в учебном процессе сформированность у учащихся умений анализировать тексты с физической информацией, умению использовать текстовую информацию в измененной ситуации, переводу информации из одной знаковой системы в другую;
- при проведении различных форм контроля более широко использовать задания разного типа, аналогичные заданиям ОГЭ. Особое внимание следует уделять заданиям на установление соответствия и сопоставление физических объектов, процессов, явлений, а также на задания со свободным развернутым ответом, требующие от учащихся умений обоснованно и кратко излагать свои мысли, применять теоретические знания на практике.

Учителям физики вести систематическую и планомерную работу по отработке основных затруднений обучающихся. В связи с этим разработать индивидуальные планы для обучающихся, использовать технологический подход в подготовке к итоговой аттестации, методические рекомендации ФИПИ, разработанные на основе анализа типичных затруднений выпускников при выполнении заданий ЕГЭ:

- Федеральная служба по надзору в сфере образования и науки ФГБНУ «Федеральный институт педагогических измерений» М.Ю. Демидова. Методические

рекомендации для учителей, подготовленные на основе анализа типичных ошибок участников ЕГЭ 2020 года по Φ ИЗИКЕ, Москва, 2020, - https://fipi.ru/ege/analiticheskieimetodicheskie-materialy#!/tab/173737686-3

- Федеральная служба по надзору в сфере образования и науки. ФГБНУ «Федеральный институт педагогических измерений». Методические материалы для председателей и членов предметных комиссий субъектов Российской Федерации по проверке выполнения заданий с развернутым ответом экзаменационных работ ЕГЭ 2020 года, ФИЗИКА, Москва, 2020, Авторы-составители: М.Ю. Демидова, А.И. Гиголо, И.Ю. Лебедева, В.Е. Фрадкин https://fipi.ru/ege/dlya-predmetnyh-komissiy-subektov-rf#!/tab/173729394-3
- Федеральная служба по надзору в сфере образования и науки. ФГБНУ «Федеральный институт педагогических измерений». Методические рекомендации обучающимся по организации индивидуальной подготовки к ЕГЭ 2020 года. ФИЗИКА. Москва, 2020. Авторы-составители: М.Ю. Демидова, В.А. Грибов https://fipi.ru/metodicheskaya-kopilka/metod-rekomendatsii-po-samostoyatelnoy-podgotovke-k-ege#!/tab/222413602-3
- Единый государственный экзамен по физике (Демонстрационный вариант. Кодификатор. Спецификация) 2021г. https://fipi.ru/ege/demoversii-specifikacii-kodifikatory#!/tab/151883967-3
- Открытый банк заданий ЕГЭ по физике: https://fipi.ru/ege/otkrytyy-bank-zadaniy-ege#!/tab/173765699-3
- Демидова. ЕГЭ-2021. Физика. 30 вариантов. Типовые экзаменационные варианты. ФИПИ. М.: Национальное образование, 2021. -https://metodlit.ru/goods/50567/
- Физика ЕГЭ 2021. Тренировочная работа № 1. Подробный разбор всех заданий. https://www.youtube.com/watch?v=ddpkSRv3hvA
- Видеокурс «Физика с репетитором. Подготовка к ЕГЭ 2021» (каждое занятие отдельная тема школьного курса физики) https://youtu.be/xq-zdMsDPys

5. Рекомендуемая литература

- 1. ОГЭ 2021 Физика. 9 класс. 30 тренировочных вариантов по демоверсии 2021 года/ Л.М.Монастырский, А.К. Атаманченко, Г.С. Безуглова. М.: Издательство «Легион», 2020.- 368 с.
- 2. ОГЭ 2021 Физика. Тренажер. Экспериментальные задания/ Г.Г. Никифоров, Е.Е. Камзеева, М.Ю. Демидова М.: Издательство «Экзамен», 2020. 144 с.

Интернет-ресурсы

- 1. Методические Открытый банк заданий ГИА. Физика. // [Электронный ресурс] URL: https://fipi.ru/
- 2.Спецификацияконтрольных измерительных материалов для проведения в 2021 году единого государственного экзамена по ФИЗИКЕ// [Электронный ресурс] URL: https://fipi.ru/
- 3. Кодификатор элементов содержания и требований к уровню подготовки обучающихся для проведения ЕГЭ по ФИЗИКЕ. // [Электронный ресурс] –URL: https://fipi.ru/
- 4. Материалы для подготовки и проведения государственного выпускного экзамена по физике (устная форма) для обучающихся по образовательным программам основного общего образования // [Электронный ресурс] –URL: https://fipi.ru/

- 5. Методические материалы для подготовки и проведения государственного выпускного экзамена по физике (письменная форма) для обучающихся по образовательным программам основного общего образования // [Электронный ресурс] —URL: https://fipi.ru/.
- 6. Методические материалы для подготовки и проведения государственного выпускного экзамена по физике (устная форма) для обучающихся по образовательным программам среднего общего образования // [Электронный ресурс] –URL: https://fipi.ru/
- 7. Методические материалы для подготовки и проведения государственного выпускного экзамена по физике (письменная форма) для обучающихся по образовательным программам среднего общего образования // [Электронный ресурс] URL: https://fipi.ru/